
Dot Analysis 1.0
Copyright (C) 2018. California Institute of Technology. All rights reserved.

Initialization
Some of the cells in this notebook are hidden by default including the next 4. They include details not
necessary to user inspection of a given image analysis job.
You can open these cells by double-clicking on the arrowed vertical line to the right of the respective
title.

To quit the session and clear all variables, select Evaluation->Quit Kernel->Local. To delete all output,
select Cell->Delete all output. These two commands may help in case Mathematica gets stuck on an
improper evaluation if this notebook is modified. The full analysis job may take a few gigabytes of
memory--retry on a more powerful computer if the workflow below does not complete properly.

To run an entire image analysis job, click the noninteractive analysis button below. If you have not set
any global variables yet, you will be asked for a JSON file to load. See provided JSON examples. Individ-
ual cells below may be rerun or manipulated to see how results change with different parameters.

For users experienced in Mathematica, to run interactive analysis, you can run each cell sequentially by
pressing shift-enter. To see all the code in this notebook, select all the cells and select Cell->Cell Proper-
ties->Open. Remember to run all cells below the modifications being made to register all updates in
your results; or just rerun the whole notebook, since parameters are stored globally.

In[37]:= Click here to run complete analysis ;

Image processing

Colocalization

Graphics

Variables

Load parameters and images

Parameters

Here we display the current of parameters (it dynamically updates as parameters are modified). JSON
files may be used to load or save the parameters. The JSON file which is loaded is not modified.

In[73]:= If[! ListQ[PATHS], askforfile[]]; (* if parameters have not been set *)

In[74]:= Print[CURRENTPARAMS]
Row[{open, save}]

File paths
BRAF-1.tif
BRAF-2.tif
Global parameters
Pixel dimensions 0.0624 0.0624 0.42
Image scaling 1 1 1
Flip image horizontally True
Blur standard deviation 0.2 0.2
Blur extent 1 1
Background subtraction length 2.5 2.5
Background subtraction coefficient 1 1
Min pixel threshold 0.003 0.012
Max pixel threshold 1 1
Watershed threshold 0.15 0.15

Channel parameters
Channel 1 Channel 2

Dot intensity definition 1

Dot intensity threshold 0.01 0.005

Coordinate offset 0 0 0

Keypoint alignment False

Colocalization distance thresholds 0.22 0.42 0.22

Colocalization mode 2

Dot counts 129 136 110

Colocalization fractions 0 0 0

Notes

Out[75]= Open JSON Save JSON

Import data

If not loading from JSON, the variables in PARAMS should be set before proceeding. Load the images
now.

In[76]:= If[! CheckPaths[PATHS], askfortiffs[]];
(* Variables not set or the PATHS don't exist *)

In[77]:= If[! CheckPaths[PATHS], stop[]];

In[78]:= IMG0 = LoadImage[Import[FindFile[#]], FLIP, {1, 1, 1}] & /@ PATHS;
(* Load image and flip horizontal dimension if desired *)

Column[{Text[Style["Unmodified images from disk (channels 1 and 2)", 20, Bold]],
Row[Show[Proj[#, 5], ImageSize → 500] & /@ IMG0, Spacer[1]]}]

Out[79]=

Unmodified images from disk (channels 1 and 2)

2 DotAnalysis.nb

Out[79]=

DotAnalysis.nb 3

Out[79]=

Run analysis

Implementation

Step 1: Blur noise

In[82]:= UnblurredIMG = AdjustImages[IMG0];
IMG = BlurNoise[UnblurredIMG];

Blurred images for channels 1 and 2:

4 DotAnalysis.nb

DotAnalysis.nb 5

Implementation

Step 2: Local background subtraction

Choose the dimensions of a rolling mean subtraction box. The box should be larger than the average
dot diameter but smaller than the scale of the fluctuation in the background. The location of this box as
depicted has no meaning.

In[85]:= ChooseRollingBox

Out[85]=

Length 2.5

Multiplier 20

Rolling mean subtraction box size

6 DotAnalysis.nb

In[86]:= Print[
AbsoluteTiming[Parallelize[IMG = MapThread[MeanSubtract, {IMG, Round[# / BOX] & /@

MEANLENGTH, MEANSCALE}];]]〚1〛, " seconds to subtract means"];
Column[{Text[Style["Images with local background subtraction (channels 1 and 2)",

20, Bold]], Row[Show[Proj[#, 5], ImageSize → 500] & /@ IMG, Spacer[1]]}]

9.83268 seconds to subtract means

Out[87]=

Images with local background subtraction (channels 1 and 2)

DotAnalysis.nb 7

Out[87]=

Implementation

Step 3: Global threshold on pixel intensity

Next we chop off all pixel intensities below a given threshold in each channel.

In[89]:= ChooseBrightnessThresholds

Out[89]=

Lower 1

0.003

End 1

0.1

Lower 2

0.012

End 2

0.1

8 DotAnalysis.nb

Out[89]=

Set the global lower thresholds for the images

In[90]:= Print[
AbsoluteTiming[Parallelize[IMG = MapThread[LinearShift, {IMG, LOWER, UPPER}];]]〚
1〛, " seconds to apply thresholds"];

0.491733 seconds to apply thresholds

DotAnalysis.nb 9

Implementation

Step 4: Watershed dot detection

The watershed method is generally too slow for interactive use, so we pick the thresholds beforehand.
If the results are unsatisfactory, we go back, change the thresholds, and rerun the method.

In[94]:= Manipulate[WATERSHED = {w1, w2},
{{w1, WATERSHED〚1〛, "Threshold 1"}, 0, 1, Appearance → "Open"},
{{w2, WATERSHED〚2〛, "Threshold 2"}, 0, 1, Appearance → "Open"}]

Out[94]=

Threshold 1

0.15

Threshold 2

0.15

{0.15, 0.15}

Display the results of the dot segmentation analyses by watershed method in both channels. The
number of total dots detected are in the titles of the plots, and both channels are depicted simultane-
ously (channel 1=blue, channel 2=yellow).

10 DotAnalysis.nb

In[95]:= RunWatershed[]

14.2838 seconds to apply watershed method

Out[95]=

To get some sense of where the watershed method is segmenting vs. agglomerating dots, we display
images of the deduced dots labeled by their index.

In[96]:= WatershedDisplay[]

Top left: watershed basins in channel 1
Top right: watershed basins in channel 2
Bottom left: circled watershed centroids in channel 1
Bottom right: circled watershed centroids in channel 2

Out[96]=

DotAnalysis.nb 11

Out[96]=

12 DotAnalysis.nb

Out[96]=

Implementation

Step 5: Global threshold on dot intensity

In this section we run interactive selection of dot intensity thresholds in channels A and B. Once the
thresholds are set as desired, go to the next cell and export results.

In[100]:= ThresholdGUI

Out[100]=

Brightness 0 Brightness

Contrast 0 Contrast

Zoom Maximum radius

Threshold A 0.01 Threshold B 0.005

Radius XY 0.22 Radius Z 0.42

Weights Total Max Mean Median Weights Total Max

Method Total Max Mean Median Colocalization XY XY

Image Original A Image Original

Circles A B AB A-B Circles A B AB

{nA=129, nB=136, nAB=110, J=0.709677, CA=0.852713

DotAnalysis.nb 13

Out[100]=

Implementation

Final image output

In this section we generate final publication quality graphics of the colocalized dots with scale bars.
Image cropping and rearrangement of scale bars may be done later in Adobe Illustrator or a similar
program. EPS files will be generated, so be sure to re-click the button if parameters are changed!

14 DotAnalysis.nb

In[103]:= ExportButton[]

Out[103]= Export final EPS images and JSON

Implementation

Histograms

In this section we examine the residual distances between dots detected in channel A and dots
detected in channel B via histograms

In[105]:= ShowHistograms[]

DotAnalysis.nb 15

16 DotAnalysis.nb

DotAnalysis.nb 17

