

In situ HCR v2.0 protocol for whole-mount mouse embryos (Mus musculus)

This protocol has been optimized for embryos at stage E9.5. Technical support: support@moleculartechnologies.org

Sample preparation

- 1. Wipe all dissection equipment with RNaseZap.
- 2. Kill a pregnant female mouse using an IACUC-approved protocol.
- 3. Immediately remove the uterus and submerge it in 4% paraformaldehyde (PFA) in a fresh RNase-free petri dish. CAUTION: Use PFA with extreme care as it is a hazardous material. NOTE: Use fresh PFA and cool to 4 °C before use to avoid increased autofluorescence.
- 4. Dissect the mouse embryos from the uterus while it is submerged in 4% PFA.
 CAUTION: Perform this step with active ventilation from a fume hood or a histology slot hood to prevent exposure to the fixative fumes.
 NOTE: Each female mouse produces 6–9 embryos. For Steps 5–9, we recommend using 1 mL of solution per group of 10 embryos.
- 5. Transfer the embryos to a clean vial containing 1 mL of fresh 4% PFA and fix them overnight or longer at 4 °C.
- 6. Wash 2×5 min with 1 mL of PBST on ice.
- 7. Dehydrate embryos into methanol (MeOH) with a series of graded 1 mL MeOH / PBST washes for 10 min on ice:
 - (a) 25% MeOH / 75% PBST
 - (b) 50% MeOH / 50% PBST
 - (c) 75% MeOH / 25% PBST
 - (d) 100% MeOH
 - (e) 100% MeOH.
- Store embryos at -20 °C overnight (> 16 h) or until use.
 NOTE: *Embryos could be stored for six months at -20 °C*.

Buffer recipes for sample preparation

 $\frac{4\% \text{ Paraformaldehyde (PFA)}}{4\% \text{ PFA}}$ $1 \times \text{PBS}$

 $\frac{\text{PBST}}{1 \times \text{PBS}}$ 0.1% Tween 20 For 25 mL of solution 1 g of PFA powder 25 mL of 1× PBS Heat solution at 50–60 °C to dissolve powder

NOTE: Avoid using calcium chloride and magnesium chloride in PBS as this leads to increased autofluorescence in the embryos.

Multiplexed in situ HCR v2.0 protocol

Detection stage

- 1. Transfer the desired number of embryos for an experiment to a 1.5 mL eppendorf tube. NOTE: All solutions and washes use a volume of 1 mL unless specified.
- 2. Rehydrate with a series of graded MeOH/PBST washes for 10 min each at room temperature:
 - (a) 75% MeOH / 25% PBST
 - (b) 50% MeOH / 50% PBST
 - (c) 25% MeOH / 75% PBST
 - (d) 100% PBST
 - (e) 100% PBST.
- 3. Immerse embryos in 10 μg/mL proteinase K solution for 15 min at room temperature. NOTE: Proteinase K concentration and treatment time should be reoptimized for each batch of proteinase K, or for samples at a different developmental stage.
- 4. Wash embryos 2×5 min with PBST.
- 5. Postfix with 4% PFA for 20 min at room temperature. CAUTION: Use PFA with extreme care as it is a hazardous material.
- 6. Wash embryos 3×5 min with PBST.
- 7. For each sample, transfer 1–4 embryos to a 1.5 mL eppendorf tube.
- 8. Incubate embryos in 1 mL solution containing 50% of hybridization buffer (with tRNA) and 50% of PBST until embryos are settled.
- 9. Pre-hybridize with probe hybridization buffer (with tRNA) for 30 min at 45 °C. CAUTION: probe hybridization buffer contains formamide, a hazardous material.
- 10. Prepare probe solution by adding 2 pmol of each probe (2 μ L of 1 μ M stock per probe) to 500 μ L of probe hybridization buffer at 45 °C.
- 11. Remove the pre-hybridization solution and add the probe solution.
- 12. Incubate embryos overnight (12–16 h) at 45 °C.
- 13. Remove excess probes by washing with 500 μ L of probe wash buffer at 45 °C:
 - (a) $2 \times 5 \min$
 - (b) $2 \times 30 \text{ min}$

CAUTION: *probe wash buffer contains formamide, a hazardous material.* NOTE: *Wash solutions should be pre-heated to 45 °C before use.*

- 14. Wash with 500 μ L of 50% probe wash buffer / 50% 5× SSCT for 10 min at 45 °C.
- 15. Wash embryos 3×5 min with $5 \times$ SSCT at room temperature.

Amplification stage

- 1. Pre-amplify embryos with 1 mL of amplification buffer for 30 min at room temperature.
- Separately prepare 30 pmol of hairpin H1 and 30 pmol of hairpin H2 by snap cooling 10 μL of 3 μM stock in hairpin storage buffer (heat at 95 °C for 90 seconds and cool to room temperature in a dark drawer for 30 min). NOTE: HCR hairpins H1 and H2 are provided in hairpin storage buffer ready for snap cooling. H1 and H2 should be snap cooled in separate tubes.
- 3. Prepare hairpin solution by adding all snap-cooled hairpins to 500 μ L of amplification buffer at room temperature.
- 4. Remove the pre-amplification solution and add the hairpin solution.
- 5. Incubate the embryos overnight (12–16 h) in the dark at room temperature.
- 6. Remove excess hairpins by washing with 500 μ L of 5× SSCT at room temperature:
 - (a) $2 \times 5 \min$
 - (b) $2 \times 30 \min$
 - (c) $1 \times 5 \min$

Sample clearing and mounting for microscopy

- 1. Clear embryos for imaging by incubating them in 500 μ L of Scale A2 solution for 1 d in the dark at 4 °C.
- 2. Clean a 25 mm \times 75 mm glass slide and a 22 mm \times 30 mm No. 1 coverslip with RNaseZap. Add four beads of vaseline to each slide to support a coverslip at the corners.
- 3. Place and orient an embryo on a slide.
- 4. Remove excess buffer and add $\approx 100 \ \mu L$ of SlowFade Gold antifade mountant over the embryo.
- 5. Place the coverslip over the embryo. Apply enough pressure to push the coverslip onto the embryo without flattening it. Seal the edges of the coverslip with nail polish.
- 6. Store the slides in the dark at 4 °C until imaging.
- A Zeiss 710 NLO inverted confocal microscope equipped with an LD LCI Plan-Apochromat 25×/0.8 Imm Corr DIC objective was used in our lab to acquire mouse images.

Buffer recipes for in situ HCR v2.0

Probes, amplifiers, probe hybridization buffer, and probe wash buffer should be stored at -20 °C. Amplification buffer should be stored at 4 °C. Keep these reagents on ice at all times during probe and amplifier preparation. Make sure all solutions are well mixed before use.

Proteinase K solution

 $10 \,\mu$ g/mL proteinase K

Probe hybridization buffer

50% formamide $5 \times$ sodium chloride sodium citrate (SSC) 9 mM citric acid (pH 6.0) 0.1% Tween 20 50 μ g/mL heparin $1 \times$ Denhardt's solution 10% dextran sulfate 500 μ g/mL tRNA

Probe wash buffer

50% formamide
5× sodium chloride sodium citrate (SSC)
9 mM citric acid (pH 6.0)
0.1% Tween 20
50 μg/mL heparin

Amplification buffer 5× sodium chloride sodium citrate (SSC) 0.1% Tween 20 10% dextran sulfate

 $\frac{5 \times \text{SSCT}}{5 \times \text{ sodium chloride sodium citrate (SSC)}}$ 0.1% Tween 20

50% dextran sulfate

Scale A2

4 M urea 10% glycerol 0.1% Triton X-100 $\frac{\text{For 2 mL of solution}}{1 \ \mu\text{L of 20 mg/mL proteinase K}}$ Fill up to 2 mL with PBST

For 40 mL of solution 20 mL formamide 10 mL of $20 \times SSC$ 360 μ L 1 M citric acid, pH 6.0 400 μ L of 10% Tween 20 200 μ L of 10 mg/mL heparin 800 μ L of 50× Denhardt's solution 8 mL of 50% dextran sulfate 200 μ L of 100 mg/mL tRNA Fill up to 40 mL with ultrapure H₂O

For 40 mL of solution 20 mL formamide 10 mL of $20 \times$ SSC 360 μ L 1 M citric acid, pH 6.0 400 μ L of 10% Tween 20 200 μ L of 10 mg/mL heparin Fill up to 40 mL with ultrapure H₂O

 $\frac{\text{For 40 mL of solution}}{10 \text{ mL of } 20 \times \text{SSC}}$ $400 \ \mu\text{L of 10\% Tween 20}$ 8 mL of 50% dextran sulfateFill up to 40 mL with ultrapure H₂O

For 40 mL of solution 20 g of dextran sulfate powder Fill up to 40 mL with ultrapure H₂O

For 40 mL of solution12.012 g of urea5 mL of glycerol50 μ L of Triton X-100Fill up to 50 mL with ultrapure H2OAdjust pH to 7.7 with NaOH

Reagents and supplies

RNaseZap (Ambion Cat. # AM9780) Paraformaldehyde (PFA) (Sigma Cat. # P6148) Methanol (Mallinckrodt Chemicals Cat. # 3016-16) Proteinase K, molecular biology grade (NEB Cat. # P8107S) Formamide (Deionized) (Ambion Cat. # AM9342) 20× sodium chloride sodium citrate (SSC) (Life Technologies Cat. # 15557-044) Heparin (Sigma Cat. # H3393) 50% Tween 20 (Life Technologies Cat. # 00-3005) $50 \times$ Denhardt's solution (Life Technologies Cat. # 750018) Dextran sulfate, mol. wt. > 500,000 (Sigma Cat. # D6001) tRNA from baker's yeast (Roche Cat. # 10109509001) UltraPure urea (Life Technologies Cat. # 15505-035) Glycerol, ACS grade (Mallinckrodt Cat. # 5092-16) Triton X-100 (Sigma Cat. # X100) $25 \text{ mm} \times 75 \text{ mm}$ glass slide (VWR Cat. # 48300-025) 22 mm × 30 mm No. 1 coverslip (VWR Cat. # 48393-026) SlowFade Gold antifade mountant (Life Technologies Cat. # S36936)

Citation Notes

Molecular Technologies (moleculartechnologies.org) is a non-profit academic resource within the Beckman Institute at Caltech. For citation, please select from the list below as appropriate for your application:

• In situ HCR v3.0

Automatic background suppression for dramatically enhanced performance (signal-to-background and quantitative precision) and ease-of-use (no probe set optimization for new targets) (Choi *et al.*, 2018). v3.0 supports three quantitative modes: qHCR imaging – analog mRNA relative quantitation with subcellular resolution; qHCR flow cytometry – analog mRNA relative quantitation for high-throughput single-cell analysis; dHCR imaging – digital mRNA absolute quantitation. Protocols for v3.0 in diverse organisms are adapted from the zoo paper.

• Quantitative HCR (qHCR) imaging

mRNA relative quantitation with subcellular resolution in the anatomical context of whole-mount vertebrate embryos; read-out/read-in analysis framework (Trivedi *et al.*, 2018).

• Zoo paper

Protocols for multiplexed mRNA imaging in diverse sample types (Choi et al., 2016):

bacteria in suspension	whole-mount zebrafish embryos and larvae
whole-mount fruit fly embryos	whole-mount chicken embryos
whole-mount worm larvae	whole-mount mouse embryos
whole-mount sea urchin embryos	FFPE human tissue sections

• Single-molecule HCR imaging

Single-molecule mRNA imaging in thick autofluorescent samples (e.g., 0.5 mm adult mouse brain sections) (Shah *et al.*, 2016).

• Multiplexed quantitative HCR (qHCR) northern blots

Simultaneous quantification of RNA target size and abundance with signal amplification for up to 5 target RNAs (Schwarzkopf & Pierce, 2016).

• In situ HCR v2.0

2nd generation in situ HCR technology (v2.0) using DNA probes and DNA HCR amplifiers: $10 \times$ increase in signal, $10 \times$ reduction in cost, dramatic increase in reagent durability (Choi *et al.*, 2014).

• Shielded covalent (SC) probes

Highly selective covalent capture of DNA and RNA targets, overcoming the longstanding tradeoff between selectivity and durable target capture (Vieregg *et al.*, 2013).

• In situ HCR v1.0

1st generation in situ HCR technology (v1.0) using RNA probes and RNA HCR amplifiers: multiplexed mRNA imaging in whole-mount vertebrate embryos with simultaneous signal amplification for up to 5 target mRNAs (Choi *et al.*, 2010).

• Hybridization chain reaction (HCR) mechanism

Isothermal enzyme-free molecular signal amplification (Dirks & Pierce, 2004).

We are happy to provide advice and technical support: support@moleculartechnologies.org.

- The Molecular Technologies Team

References

- Choi, H. M. T., Chang, J. Y., Trinh, L. A., Padilla, J. E., Fraser, S. E., & Pierce, N. A. (2010). Programmable in situ amplification for multiplexed imaging of mRNA expression. *Nat Biotechnol*, **28**(11), 1208–12. (pdf, supp info, supp movie 1, supp movie 2)
- Choi, H. M. T., Beck, V. A., & Pierce, N. A. (2014). Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability. *ACS Nano*, **8**(5), 4284–4294. (pdf, supp info, supp movie)
- Choi, H. M. T., Calvert, C. R., Husain, N., Huss, D., Barsi, J. C., Deverman, B. E., Hunter, R. C., Kato, M., Lee, S. M., Abelin, A. C. T., Rosenthal, A. Z., Akbari, O. S., Li, Y., Hay, B. A., Sternberg, P. W., Patterson, P. H., Davidson, E. H., Mazmanian, S. K., Prober, D. A., van de Rijn, M., Leadbetter, J. R., Newman, D. K., Readhead, C., Bronner, M. E., Wold, B., Lansford, R., Sauka-Spengler, T., Fraser, S. E., & Pierce, N. A. (2016). Mapping a multiplexed zoo of mRNA expression. *Development*, 143, 3632–3637. (pdf, supp info, fruit fly movie, sea urchin movie, zebrafish movie, chicken movie, mouse movie)
- Choi, H. M. T., Schwarzkopf, M., Fornace, M. E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha, A., & Pierce, N. A. (2018). Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. *bioRxiv*, doi: http://dx.doi.org/10.1101/285213. (pdf, supp info)
- Dirks, R. M., & Pierce, N. A. (2004). Triggered amplification by hybridization chain reaction. *Proc Natl Acad Sci* USA, **101**(43), 15275–15278. (pdf)
- Schwarzkopf, M., & Pierce, N. A. (2016). Multiplexed miRNA northern blots via hybridization chain reaction. *Nucleic Acids Res*, **44**(15), e129. (pdf, supp info)
- Shah, S., Lubeck, E., Schwarzkopf, M., He, T.-F., Greenbaum, A., Sohn, C. H., Lignell, A., Choi, H. M. T., Gradinaru, V., Pierce, N. A., & Cai, L. (2016). Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing. *Development*, 143, 2862–2867. (pdf, supp info, supp movie 1, supp movie 2, supp movie 3)
- Trivedi, V., Choi, H. M. T., Fraser, S. E., & Pierce, N. A. (2018). Multidimensional quantitative analysis of mRNA expression within intact vertebrate embryos. *Development*, 145, doi:10.1242/dev.156869. (pdf, supp info, Readout/Read-in 1.0 package)
- Vieregg, J. R., Nelson, H. M., Stoltz, B. M., & Pierce, N. A. (2013). Selective nucleic acid capture with shielded covalent probes. J Am Chem Soc, 135(26), 9691–9699. (pdf, supp info)