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Hybridization chain reaction enables a unified approach to
multiplexed, quantitative, high-resolution immunohistochemistry
and in situ hybridization
Maayan Schwarzkopf1,*, Mike C. Liu2,*, Samuel J. Schulte1,‡, Rachel Ives2,‡, Naeem Husain1,
Harry M. T. Choi2,§ and Niles A. Pierce1,3,§

ABSTRACT
RNA in situ hybridization based on the mechanism of the hybridization
chain reaction (HCR) enablesmultiplexed, quantitative, high-resolution
RNA imaging in highly autofluorescent samples, including whole-
mount vertebrate embryos, thick brain slices and formalin-fixed
paraffin-embedded tissue sections. Here, we extend the benefits of
one-step, multiplexed, quantitative, isothermal, enzyme-free HCR
signal amplification to immunohistochemistry, enabling accurate and
precise protein relative quantitation with subcellular resolution in an
anatomical context. Moreover, we provide a unified framework for
simultaneous quantitative protein and RNA imaging with one-step
HCR signal amplification performed for all target proteins and RNAs
simultaneously.

KEY WORDS: Immunofluorescence (IF), RNA fluorescence in situ
hybridization (RNA-FISH), qHCR imaging, Formalin-fixed paraffin-
embedded (FFPE) mouse brain and human breast tissue sections,
Whole-mount zebrafish embryos

INTRODUCTION
Biological circuits encoded in the genome of each organism direct
development, maintain integrity in the face of attacks, control
responses to environmental stimuli and sometimes malfunction to
cause disease. RNA in situ hybridization (RNA-ISH) methods
(Harrison et al., 1973; Tautz and Pfeifle, 1989; Qian et al., 2004)
and immunohistochemistry (IHC) methods (Coons et al., 1941;
Ramos-Vara, 2005; Kim et al., 2016) provide biologists, drug
developers and pathologists with crucial windows into the spatial
organization of this circuitry, enabling imaging of RNA and protein
expression in an anatomical context. Although it is desirable to

perform multiplexed experiments in which a panel of targets are
imaged quantitatively at high resolution in a single specimen, using
traditional RNA-ISH and IHC methods in highly autofluorescent
samples including whole-mount vertebrate embryos and FFPE
tissue sections, multiplexing is cumbersome, staining is non-
quantitative and spatial resolution is routinely compromised by
diffusion of reporter molecules. These multi-decade technological
shortcomings are significant impediments to biological research, as
well as to the advancement of drug development and pathology
assays, hindering high-dimensional, quantitative, high-resolution
analyses of developmental and disease-related regulatory networks
in an anatomical context.

RNA-ISH methods detect RNA targets using nucleic acid probes
and IHC methods detect protein targets using antibody probes. In
either case, probes can be directly labeled with reporter molecules
(Kislauskis et al., 1993; Femino et al., 1998; Kosman et al., 2004;
Chan et al., 2005; Raj et al., 2008), but to increase the signal-to-
background ratio, are more often used to mediate signal
amplification in the vicinity of the probe (Qian and Lloyd, 2003;
Ramos-Vara and Miller, 2014). A variety of in situ amplification
approaches have been developed, including immunological
methods (Macechko et al., 1997; Hughes and Krause, 1998;
Kosman et al., 2004), branched DNA methods (Player et al., 2001;
Wang et al., 2012; Kishi et al., 2019; Saka et al., 2019), in situ PCR
methods (Nuovo et al., 1992; Martínez et al., 1995; Wiedorn et al.,
1999) and rolling circle amplification methods (Gusev et al., 2001;
Zhou et al., 2001; Larsson et al., 2010). However, for both RNA-
ISH (Tautz and Pfeifle, 1989; Harland, 1991; Lehmann and Tautz,
1994; Kerstens et al., 1995; Nieto et al., 1996; Thisse et al., 2004;
Piette et al., 2008; Thisse and Thisse, 2008; Wang et al., 2012) and
IHC (Takakura et al., 1997; Sillitoe and Hawkes, 2002; Ahnfelt-
Ronne et al., 2007; Fujisawa et al., 2015; Staudt et al., 2015),
traditional in situ amplification based on enzyme-mediated catalytic
reporter deposition (CARD) remains the dominant approach for
achieving high signal-to-background in highly autofluorescent
samples, including whole-mount vertebrate embryos and FFPE
tissue sections. CARD is widely used despite three significant
drawbacks: multiplexing is cumbersome due to the lack of orthogonal
deposition chemistries, necessitating serial amplification for one
target after another (Denkers et al., 2004; Kosman et al., 2004; Clay
and Ramakrishnan, 2005; Barroso-Chinea et al., 2007; Tóth and
Mezey, 2007; Glass et al., 2009; Stack et al., 2014; Mitchell et al.,
2014; Tsujikawa et al., 2017); staining is qualitative rather than
quantitative; and spatial resolution is often compromised by diffusion
of reporter molecules before deposition (Tautz and Pfeifle, 1989;
Takakura et al., 1997; Sillitoe and Hawkes, 2002; Thisse et al., 2004;
Acloque et al., 2008; Weiszmann et al., 2009).
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In the context of RNA-ISH, in situ amplification based on the
mechanism of hybridization chain reaction (HCR; Fig. 1A) (Dirks
and Pierce, 2004) overcomes the longstanding shortcomings of
CARD to enable multiplexed, quantitative, high-resolution imaging
of RNA expression in diverse organisms and sample types,
including highly autofluorescent samples (Choi et al., 2010, 2014,
2016, 2018; Shah et al., 2016; Trivedi et al., 2018) (e.g. see
Table S1). To image RNA expression, targets are detected by
nucleic acid probes that trigger isothermal enzyme-free chain
reactions in which fluorophore-labeled HCR hairpins self-assemble
into tethered fluorescent amplification polymers (Fig. 1B).
Orthogonal HCR amplifiers operate independently within the
sample so the experimental timeline for multiplexed experiments
is independent of the number of target RNAs (Choi et al., 2010,
2014). The amplified HCR signal scales approximately linearly
with the number of target molecules (Fig. 1E), enabling accurate
and precise RNA relative quantitation with subcellular resolution in
the anatomical context of whole-mount vertebrate embryos (Trivedi
et al., 2018; Choi et al., 2018). Amplification polymers remain
tethered to their initiating probes, enabling imaging of RNA
expression with subcellular or single-molecule resolution as desired
(Choi et al., 2014, 2016, 2018; Shah et al., 2016).
These properties that make HCR signal amplification well-suited

for RNA-ISH appear equally favorable in the context of IHC,
suggesting the approach of combining HCR signal amplification
with antibody probes (Koos et al., 2015; Husain, 2016; Lin et al.,
2018b). Here, we extend the benefits of one-step, quantitative,
enzyme-free signal amplification from RNA-ISH to IHC, validating
multiplexed, quantitative, high-resolution imaging of protein
expression with high signal-to-background in highly autofluorescent
samples, thus overcoming the longstanding shortcomings of IHC
using CARD. Moreover, we establish a unified framework for

simultaneous multiplexed, quantitative, high-resolution IHC and
RNA-ISH, with one-step HCR signal amplification performed for
all targets simultaneously.

RESULTS
For protein imaging with HCR we pursue two complementary
approaches. Using HCR 1°IHC, protein targets are detected using
primary antibody probes labeled with one or more HCR initiators
(Fig. 1C). For multiplexed experiments, the probes for different
targets are labeled with different HCR initiators that trigger
orthogonal HCR amplifiers labeled with spectrally distinct
fluorophores. Researchers have the flexibility to detect different
targets using primary antibody probes raised in the same host
species (or a variety of host species, as convenient). On the other
hand, each new initiator-labeled primary antibody probe must
be validated, as there is the potential for oligo conjugation to
interfere with epitope binding in an antibody- or crosslinker-
dependent fashion. Using HCR 2°IHC, protein targets are detected
using unlabeled primary antibody probes that are in turn detected
by secondary antibody probes labeled with one or more HCR
initiators (Fig. 1D). This approach has the advantage that validation
of a small library of initiator-labeled secondary antibodies
(e.g. five secondaries targeting different host species) enables
immediate use of large libraries of primary antibody probes (e.g. 105

commercially available primaries) without modification. On the
other hand, for multiplexed experiments, each target must be
detected using a primary antibody raised in a different host
species to enable subsequent detection by an anti-host secondary
antibody probe that triggers an orthogonal spectrally distinct HCR
amplifier. Hence, depending on the available antibody probes,
one may prefer HCR 1°IHC in one instance and HCR 2°IHC in
another.

Fig. 1. A unified framework for multiplexed, quantitative, high-resolution protein and RNA imaging using HCR 1°IHC + HCR RNA-ISH or HCR 2°IHC +
HCR RNA-ISH (A) One-step, isothermal, enzyme-free signal amplification via hybridization chain reaction (HCR) (Dirks and Pierce, 2004). Kinetically trapped
hairpins h1 and h2 co-exist metastably in solution on lab time scales, storing the energy to drive a conditional self-assembly cascade upon exposure to a cognate
initiator sequence i1. Stars indicate fluorophores. (B) HCR RNA-ISH using split-initiator probe pairs that hybridize to adjacent binding sites on the target RNA to
colocalize a full HCR initiator and trigger HCR. (C) HCR 1°IHC using initiator-labeled primary antibody probes. (D) HCR 2°IHC using unlabeled primary antibody
probes and initiator-labeled secondary antibody probes. (E) Conceptual schematic: HCR signal scales approximately linearly with the abundance of a target RNA
(green channel) or protein (red channel), enabling accurate and precise relative quantitation with subcellular resolution in an anatomical context.
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Multiplexed protein imaging using HCR 1°IHC or HCR 2°IHC
Fig. 2 demonstrates multiplexed protein imaging via HCR 1°IHC
using initiator-labeled primary antibody probes. Fig. 3 demonstrates
multiplexed protein imaging via HCR 2°IHC using unlabeled
primary antibody probes and initiator-labeled secondary antibody
probes. Both methods achieve high signal-to-background for 3-plex
protein imaging inmammalian cells and for 4-plex protein imaging in
FFPEmouse brain sections. Across 21 protein imaging scenarios (six
in mammalian cells, ten in FFPE mouse brain sections, four in FFPE
human breast tissue sections and one in whole-mount zebrafish
embryos; nine usingHCR 1°IHC and 12 usingHCR 2°IHC; 11 using
confocal microscopy and ten using epifluorescence microscopy),
the estimated signal-to-background ratio for protein targets ranged
from 15 to 609 with a median of 90 (see Tables S9 and S10 for
additional details). The level of performance demonstrated in Figs 2
and 3 was achieved for all targets simultaneously in 4-channel and
5-channel images (including a DAPI channel in each case) using
fluorophores that compete with lower autofluorescence (Alexa647)
as well as with higher autofluorescence (Alexa488) and in samples
with lower autofluorescence (mammalian cells) and higher
autofluorescence (FFPE mouse brain sections).

Using HCR signal amplification, the amplification gain
corresponds to the number of fluorophore-labeled hairpins per
amplification polymer. Hence, we were curious to measure the mean
HCR polymer length in the context of HCR 1°IHC and HCR 2°IHC
experiments. We can estimate HCR amplification gain by comparing
the signal intensity in HCR experiments using h1 and h2 hairpins
together (enabling polymerization to proceed as normal) versus
using only hairpin h1 (so that each HCR initiator can bind only
one HCR hairpin and polymerization cannot proceed). Across
four measurement scenarios (two in mammalian cells and two in
FFPE mouse brain sections; two using HCR 1°IHC and two using
HCR 2°IHC), we observed a median polymer length of ≈180
hairpins (see section S5.5 in the supplementary information). It is this
amplification gain that boosts the signal above autofluorescence to
yield a high signal-to-background ratio even in FFPE tissues and
whole-mount vertebrate embryos.

qHCR imaging: protein relative quantitation with subcellular
resolution in an anatomical context
We have previously demonstrated that HCR RNA-ISH overcomes
the historical tradeoff between RNA quantitation and anatomical

Fig. 2. Multiplexedprotein imagingviaHCR1°IHCusing initiator-labeledprimaryantibodyprobesandsimultaneousHCRsignal amplification forall targets.
(A) Two-stage HCR 1°IHC protocol. Detection stage: initiator-labeled primary antibody probes bind to protein targets; wash. Amplification stage: initiators trigger self-
assembly of fluorophore-labeled HCR hairpins into tethered fluorescent amplification polymers; wash. (B) Multiplexing timeline. The same two-stage protocol is used
independent of the number of target proteins. (C) Confocal image of 3-plex protein imaging in mammalian cells on a slide; 0.2×0.2 µm pixels; maximum intensity
z-projection. Target proteins: HSP60 (Alexa488), GM130 (Alexa647) andSC35 (Alexa546). Sample: HeLacells. (D) Epifluorescence image of 4-plex protein imaging in
FFPE mouse brain sections; 0.3×0.3 µm pixels. Target proteins: TH (Alexa488), GFAP (Alexa546), MBP (Alexa647) and MAP2 (Alexa750). (E) Zoom of indicated
region in D. Sample: FFPE C57BL/6 mouse brain section (coronal); 5 µm thickness. See section S5.2 of the supplementary information for additional data.
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context, enabling mRNA relative quantitation (qHCR imaging)
with subcellular resolution within whole-mount vertebrate embryos
(Trivedi et al., 2018; Choi et al., 2018). Here, we demonstrate that
HCR IHC enables analogous subcellular quantitation of proteins in
an anatomical context. To test protein relative quantitation, we first
redundantly detected a target protein using two primary antibody
probes that bind different epitopes on the same protein and trigger
different spectrally distinct HCR amplifiers (Fig. 4A; top), yielding
a two-channel image (Fig. 4B; top). If HCR signal scales
approximately linearly with the number of target proteins per
voxel, a two-channel scatter plot of normalized voxel intensities will
yield a tight linear distribution with approximately zero intercept
(Trivedi et al., 2018). On the other hand, observing a tight linear
distribution with approximately zero intercept (Fig. 4C; top), we
conclude that the HCR signal scales approximately linearly with the
number of target proteins per imaging voxel, after first ruling out
potential systematic crowding effects that could permit pairwise
voxel intensities to slide undetected along a line (Fig. S24). Using
one initiator-labeled primary antibody probe per channel, we
observe high accuracy (linearity with zero intercept) and precision

(scatter around the line) for subcellular 2×2 µm voxels within 5 µm
FFPE mouse brain sections using epifluorescence microscopy.
This redundant detection experiment provides a conservative
characterization of quantitative performance as there is the risk
that two antibody probes may interfere with each other to some
extent when attempting to bind different epitopes on the same target
protein. As a further test of quantitative imaging characteristics,
we detected a protein target with unlabeled primary antibody
probes that are subsequently detected by two batches of secondary
antibody probes that trigger different spectrally distinct HCR
amplifiers (Fig. 4A; bottom). This experiment is testing the accuracy
and precision of the secondary antibody probes and HCR signal
amplification, but not that of the primary antibody probes. In
FFPE human breast tissue sections using confocal microscopy
(Fig. 4B; bottom), a two-channel scatter plot of voxel intensities
for subcellular 2.0×2.0×2.5 µm voxels again reveals a tight
linear distribution with approximately zero intercept (Fig. 4C;
bottom). Based on these two studies, we conclude that qHCR
imaging enables accurate and precise relative quantitation
of protein targets in an anatomical context with subcellular

Fig. 3. Multiplexed protein imaging via HCR 2°IHC using unlabeled primary antibody probes, initiator-labeled secondary antibody probes and
simultaneous HCR signal amplification for all targets. (A) Two-stage HCR 2°IHC protocol. Detection stage: unlabeled primary antibody probes bind to protein
targets; wash; initiator-labeled secondary antibody probes bind to primary antibody probes; wash. Amplification stage: initiators trigger self-assembly of
fluorophore-labeled HCR hairpins into tethered fluorescent amplification polymers; wash. (B) Multiplexing timeline. The same two-stage protocol is used
independent of the number of target proteins. (C) Confocal image of 3-plex protein imaging in mammalian cells on a slide; 0.14×0.14 µm pixels; maximum
intensity z-projection. Target proteins: PCNA (Alexa647), HSP60 (Alexa546) and SC35 (Alexa488). Sample: HeLa cells. (D) Epifluorescence image of 4-plex
protein imaging in FFPE mouse brain sections; 0.6×0.6 µm pixels. Target proteins: TH (Alexa488), GFAP (Alexa546), PVALB (Alexa647) and MBP (Alexa750).
(E) Zoom of indicated region in D. Sample: FFPE C57BL/6 mouse brain section (coronal); 5 µm thickness. See sections S5.3 and S5.4 of the supplementary
information for additional data.
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resolution, just as it does for mRNA targets (Trivedi et al., 2018;
Choi et al., 2018).

Simultaneous multiplexed protein and RNA imaging using
HCR 1°IHC + HCR RNA-ISH or HCR 2°IHC + HCR RNA-ISH
It is important for biologists, drug developers and pathologists
to have the flexibility to image proteins and RNAs simultaneously
so as to enable interrogation of both levels of gene expression
in the same specimen. Here, we demonstrate that HCR 1°IHC
and HCR 2°IHC are both compatible with HCR RNA-ISH,
enabling multiplexed quantitative protein and RNA imaging
with high signal-to-background. Fig. 5 demonstrates HCR
1°IHC + HCR RNA-ISH (2-plex protein + 2-plex RNA) in
mammalian cells and FFPE mouse brain sections using initiator-
labeled primary antibody probes for protein targets, split-initiator
DNA probes for RNA targets, and simultaneous HCR signal
amplification for all targets. Fig. 6 demonstrates HCR 2°IHC +
HCR RNA-ISH (2-plex protein + 2-plex RNA) in mammalian
cells and FFPE mouse brain sections using unlabeled primary
antibody probes and initiator-labeled secondary antibody
probes for protein targets, split-initiator DNA probes for RNA
targets, and simultaneous HCR signal amplification for all targets.
Across 16 protein and RNA imaging scenarios (eight in
mammalian cells and eight in FFPE mouse brain sections; eight
using HCR 1°IHC +HCRRNA-ISH and eight using HCR 2°IHC +
HCR RNA-ISH; eight using confocal microscopy and eight using
epifluorescence microscopy), the estimated signal-to-background

ratio for each target protein or RNA ranged from 20 to 700, with a
median of 100 (see Tables S9 and S11 for additional details).

DISCUSSION
qHCR imaging enables a unified approach to multiplexed
quantitative IHC and RNA-ISH. A single experiment yields
accurate and precise relative quantitation of both protein and RNA
targets with subcellular resolution in the anatomical context of
highly autofluorescent samples. No extra work is necessary to
perform quantitative imaging – it is a natural property of HCR signal
amplification. Here, we validated two complementary approaches
for HCR IHC. Using HCR 1°IHC (initiator-labeled primary
antibody probes), each target protein in a multiplexed experiment
can be detected with antibodies raised in the same host species,
which is often convenient based on available antibody libraries.
However, antibody-initiator conjugation must be validated for each
new primary antibody probe. Alternatively, using HCR 2°IHC
(unlabeled primary antibody probes and initiator-labeled secondary
antibody probes), each target protein in a multiplexed experiment
must be detected with primary antibodies raised in different host
species, thus enabling subsequent binding by initiator-labeled
secondary antibodies that react with those different host species.
This approach has the benefit that a small library of initiator-labeled
secondary antibodies can be validated a priori and then used with
large libraries of (unmodified) validated primary antibodies,
enabling a plug-and-play approach using validated reagents. For
simultaneous protein and RNA imaging: during the protein
detection stage, M target proteins are detected in parallel; during

Fig. 4. qHCR imaging: protein relative quantitationwith subcellular resolution in an anatomical context usingHCR 1°IHCorHCR 2°IHC. (A) Two-channel
redundant detection of a target protein. Top: target protein detected using two primary antibody probes that bind different epitopes, each initiating an orthogonal
spectrally distinct HCR amplifier (Ch1, Alexa647; Ch2, Alexa750). Bottom: target protein detected using an unlabeled primary antibody probe and two batches of
secondary antibody probes that initiate orthogonal spectrally distinct HCR amplifiers (Ch1, Alexa546; Ch2, Alexa647). (B) Top: epifluorescence image of FFPE
mouse brain section; 0.16×0.16 µm pixels. Target protein: TH. Sample: FFPEC57BL/6 mouse brain section (coronal); 5 µm thickness. Bottom: confocal image of
FFPE human breast tissue; 0.3×0.3 µm pixels; single optical section. Target protein: KRT17. Sample: FFPE human breast tissue section; 5 µm thickness.
(C) High accuracy and precision for protein relative quantitation in an anatomical context. Highly correlated normalized signal (Pearson correlation coefficient, r)
for subcellular voxels in the indicated region in B (top: 2×2 µm voxels in a 5 µm section using epifluorescence microscopy; bottom: 2.0×2.0×2.5 µm voxels using
confocal microscopy). Accuracy: linearity with zero intercept. Precision: scatter around the line. See section S5.6 of the supplementary information for additional
data.
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the RNA detection stage, N target RNAs are detected in parallel;
and during the amplification stage, one-step quantitative HCR
signal amplification is performed for all M+N protein and RNA
targets simultaneously. In 4-plex experiments in FFPE tissue
sections, protein and RNA targets are simultaneously imaged
with high signal-to-background in all four channels
using fluorophores that compete with varying degrees
of autofluorescence. For protein imaging using HCR 1°IHC or
HCR 2°IHC, we favor protocols with two overnight incubations
(Figs 2B and 3B), and for simultaneous protein and RNA imaging
using HCR 1°IHC + HCR RNA-ISH or HCR 2°IHC + HCR RNA-
ISH, we favor protocols with three overnight incubations (Figs 5A
and 6A), allowing researchers to maintain a normal sleep schedule.
HCR RNA-ISH provides automatic background suppression

throughout the protocol, ensuring that reagents will not generate
amplified background even if they bind non-specifically within the
sample (Choi et al., 2018). During the detection stage, each RNA
target is detected by a probe set comprising one or more pairs of split-
initiator probes, each carrying a fraction of HCR initiator i1 (Fig. 1B).
For a given probe pair, probes that hybridize specifically to their

adjacent binding sites on the target RNA colocalize full initiator i1,
enabling cooperative initiation of HCR signal amplification.
Meanwhile, any individual probes that bind non-specifically in the
sample do not colocalize full initiator i1, do not trigger HCR and thus
suppress generation of amplified background. During the
amplification stage, automatic background suppression is inherent
to HCR hairpins because polymerization is conditional on the
presence of the initiator i1; individual h1 or h2 hairpins that bind non-
specifically in the sample do not trigger formation of an amplification
polymer. For HCR IHC, during the detection stage, each target
protein is detected using primary or secondary antibody probes
carrying one or more full i1 initiators (Fig. 1C,D). Hence, if an
antibody probe binds non-specifically in the sample, initiator i1 will
nonetheless trigger HCR, generating amplified background. As a
result, it is important to use antibody probes that are highly selective
for their targets, and to wash unused antibody probes from the
sample. Nonetheless, during the amplification stage, kinetically
trapped HCR hairpins provide automatic background suppression
for protein targets just as they do for RNA targets, ensuring that
any hairpins that bind non-specifically in the sample do not trigger

Fig. 5. Simultaneous multiplexed protein and RNA imaging via HCR 1°IHC + HCR RNA-ISH using initiator-labeled primary antibody probes for protein
targets, split-initiator DNA probes for RNA targets, and simultaneous HCR signal amplification for all targets. (A) Three-stage HCR 1°IHC + HCR RNA-
ISH protocol. Protein detection stage: initiator-labeled primary antibody probes bind to protein targets; wash. RNA detection stage: split-initiator DNA probes bind
to RNA targets; wash. Amplification stage: initiators trigger self-assembly of fluorophore-labeled HCR hairpins into tethered fluorescent amplification polymers;
wash. For multiplexed experiments, the same three-stage protocol is used independent of the number of target proteins and RNAs. (B) Confocal image of 4-plex
protein and RNA imaging in mammalian cells on a slide; 0.13×0.13 µm pixels; maximum intensity z-projection. Targets: PCNA (protein; Alexa488), HSP60
(protein; Alexa546), U6 (RNA; Alexa594) and ACTB (mRNA; Alexa647). Sample: HeLa cells. (C) Epifluorescence image of 4-plex protein and RNA imaging in
FFPE mouse brain sections; 0.16×0.16 µm pixels. Targets: TH (protein; Alexa488), MBP (protein; Alexa546), Prkcd (mRNA; Alexa647) and Slc17a7 (mRNA;
Alexa750). Sample: FFPE C57BL/6 mouse brain section (coronal); 5 µm thickness. (D) Zooms of indicated regions in C. See sections S5.7 and S5.8 of the
supplementary information for additional data.

6

TECHNIQUES AND RESOURCES Development (2021) 148, dev199847. doi:10.1242/dev.199847

D
E
V
E
LO

P
M

E
N
T

https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199847
https://journals.biologists.com/dev/article-lookup/DOI/10.1242/dev.199847


growth of an HCR amplification polymer. For experiments using
HCR IHC + HCR RNA-ISH to image protein and RNA targets
simultaneously, RNA targets enjoy automatic background
suppression throughout the protocol, whereas protein targets rely
on selective antibody binding to suppress background during the
detection stage, combined with automatic background suppression
during the amplification stage.
For RNA targets, we have previously shown that multiplexed

qHCR imaging enables bi-directional quantitative discovery
(Trivedi et al., 2018): read-out from anatomical space to
expression space to discover co-expression relationships in
selected regions of the sample; read-in from expression space to
anatomical space to discover those anatomical locations in which
selected gene co-expression relationships occur. Here, by validating
high-accuracy, high-precision, high-resolution qHCR imaging for
protein targets, read-out/read-in analyses can now be performed for
RNA and protein targets simultaneously, offering biologists, drug
developers and pathologists a significantly expanded window for
analyzing biological circuits in an anatomical context.

MATERIALS AND METHODS
Probes, amplifiers and buffers
Details on the probes, amplifiers and buffers for each experiment are
displayed in Table S2 for HCR 1°IHC, in Table S3 for HCR 2°IHC and in
Table S4 for HCR RNA-ISH. HCR initiators were conjugated to antibody
probes using the Antibody-Oligonucleotide All-in-One Conjugation Kit
(Vector Laboratories, A-9202) according to the manufacturer’s instructions.

HCR IHC with/without HCR RNA-ISH
HCR 1°IHC with/without HCR RNA-ISH was performed using the
protocols detailed in section S3 in the supplementary information. HCR
2°IHC with/without HCR RNA-ISH was performed using the protocols
detailed in section S4 in the supplementary information. These IHC
protocols with/without HCR RNA-ISH were developed starting from HCR
RNA-ISH protocols (Choi et al., 2018). The optional autofluorescence
bleaching protocol for FFPE mouse brain tissue sections, combining photo-
(Duong and Han, 2013) and chemical (Lin et al., 2018a) bleaching, was
used only for the HCR IHC + HCR RNA-ISH studies of Figs 5C,D and
6C,D, and the associated replicates in Figs S35, S36, S43 and S44. Strictly
speaking, the cultured cell studies represent immunocytochemistry (ICC)

Fig. 6. Simultaneous multiplexed protein and RNA imaging via HCR 2°IHC + HCR RNA-ISH using unlabeled primary antibody probes and initiator-
labeled secondary antibody probes for protein targets, split-initiator DNA probes for RNA targets, and simultaneous HCR signal amplification for all
targets. (A) Three-stageHCR 2°IHC +HCRRNA-ISH protocol. Protein detection stage: unlabeled primary antibody probes bind to protein targets; wash; initiator-
labeled secondary antibody probes bind to primary antibody probes; wash. RNA detection stage: split-initiator DNA probes bind to RNA targets; wash.
Amplification stage: initiators trigger self-assembly of fluorophore-labeled HCR hairpins into tethered fluorescent amplification polymers; wash. For multiplexed
experiments, the same three-stage protocol is used independent of the number of target proteins and RNAs. (B) Confocal image of 4-plex protein and RNA
imaging in mammalian cells on a slide; 0.13×0.13 µm pixels; maximum intensity z-projection. Targets: PCNA (protein; Alexa488), HSP60 (protein; Alexa546),U6
(RNA; Alexa594) and HSP60 (mRNA; Alexa647). Sample: HeLa cells. (C) Epifluorescence image of 4-plex protein and RNA imaging in FFPE mouse brain
sections; 0.16×0.16 µm pixels. Targets: TH (protein; Alexa488), MBP (protein; Alexa546), Prkcd (mRNA; Alexa647) and Slc17a7 (mRNA; Alexa750). Sample:
FFPE C57BL/6 mouse brain section (coronal); 5 µm thickness. (D) Zooms of indicated regions in C. See sections S5.9 and S5.10 of the supplementary
information for additional data.
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rather than IHC; for notational simplicity, we use the term IHC uniformly
in the main text but denote protocols for cultured cells as ICC in the
supplementary information. For five-channel imaging of HeLa cells
(Figs 5B, S33, S34, 6B, S41, S42) the above protocols were modified
as follows to enable imaging on an upright confocal microscope: cells
were grown on a chambered slide with removable chambers (Ibidi,
81201); prior to imaging, the silicone chambers were removed and cells
were mounted with ProLong glass antifade mountant with NucBlue
(Thermo Fisher Scientific, P36981) according to the manufacturer’s
instructions.

Experiments were performed in HeLa cells (ATCC, CRM-CCL-2), FFPE
C57BL/6 mouse brain sections (coronal; thickness 5 µm, Acepix Biosciences
7011-0120), FFPE human breast tissue sections (thickness 5 µm; Acepix
Biosciences, 7310-0620) and whole-mount zebrafish embryos (wildtype
Danio rerio strain AB; fixed at 27 hpf). Procedures for the care and use of
zebrafish embryos were approved by the Caltech IACUC.

Confocal microscopy
Confocal microscopy was performed using a Zeiss LSM 800 inverted
confocal microscope or a Zeiss LSM 880 with Fast Airyscan upright
confocal microscope. All confocal images are displayed without
background subtraction. See Table S5 for details on the microscope,
objective, excitation lasers, beam splitters and emission bandpass filters
used for each experiment.

Epifluorescence microscopy
Epifluorescence microscopy was performed using a Leica THUNDER
Imager 3D cell culture epifluorescence microscope equipped with a
Leica LED8 multi-LED light source and sCMOS camera (Leica
DFC9000 GTC). All epifluorescence images were acquired without
THUNDER computational clearing and are displayed with instrument
noise subtracted but without background subtraction. See Table S6 for
details on the objective, excitation wavelengths and filters used for each
experiment.

Image analysis
Image analysis was performed as detailed in section S2.6 of the
supplementary information, including: definition of raw pixel intensities;
measurement of signal, background and signal-to-background;
measurement of background components and calculation of normalized
subcellular voxel intensities for qHCR imaging.
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Koos, B., Cane, G., Grannas, K., Löf, L., Arngården, L., Heldin, J., Clausson, C.-
M., Klaesson, A., Hirvonen, M. K., de Oliveira, F. M. S. et al. (2015). Proximity-
dependent initiation of hybridization chain reaction. Nat. Commun. 6, 7294.
doi:10.1038/ncomms8294

Kosman, D., Mizutani, C. M., Lemons, D., Cox, W. G., McGinnis, W. and Bier, E.
(2004). Multiplex detection of RNA expression in Drosophila embryos. Science
305, 846. doi:10.1126/science.1099247
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