|
|
HCR Citation Notes
For citation, please select from the list below as appropriate for your application:
-
10-plex HCR spectral imaging
HCR spectral imaging of any combination of 10 RNA, protein, or protein:protein targets with 1-step quantitative HCR signal amplification for all targets simultaneously (Schulte et al., 2024a).
-
HCR protein:protein complex imaging
Multiplexed, quantitative, high-resolution imaging of protein:protein complexes with/without HCR IF and/or HCR RNA-FISH with simultaneous HCR signal amplification for all protein:protein, protein, and RNA targets (Schulte et al., 2024b)
-
HCR RNA-FISH/IF
A unified approach to multiplexed, quantitative, high-resolution RNA fluorescence in situ hybridization (RNA-FISH) and protein immunofluorescence (IF) with 1-step quantitative enzyme-free HCR signal amplification performed for all RNA and protein targets simultaneously
(Schwarzkopf et al., 2021)
-
HCR IF
Multiplexed, quantitative, high-resolution protein immunofluorecence (IF) in highly autofluorescent samples (e.g., FFPE brain tissue sections)
(Schwarzkopf et al., 2021)
-
Single-molecule HCR imaging
Single-molecule mRNA imaging in thick autofluorescent samples (e.g., 0.5 mm adult mouse brain sections) (Shah et al., 2016).
-
Multiplexed quantitative HCR (qHCR) northern blots
Simultaneous quantification of RNA target size and abundance with signal amplification for up to 5 target RNAs (Schwarzkopf & Pierce, 2016).
-
In situ HCR RNA-FISH (v2.0)
2nd generation in situ HCR technology (v2.0) using DNA probes and DNA HCR amplifiers: 10× increase in signal, 10× reduction in cost, dramatic increase in reagent durability (Choi et al., 2014).
-
Shielded covalent (SC) probes
Highly selective covalent capture of DNA and RNA targets, overcoming the longstanding tradeoff between selectivity and durable target capture (Vieregg et al., 2013).
-
HCR RNA-FISH (v1.0)
1st generation in situ HCR technology (v1.0) using RNA probes and RNA HCR amplifiers: multiplexed mRNA imaging in whole-mount vertebrate embryos with simultaneous signal amplification for up to 5 target mRNAs (Choi et al., 2010).
-
Hybridization chain reaction (HCR) mechanism
The hybridization chain reaction (HCR) mechanism enables isothermal enzyme-free molecular signal amplification (Dirks & Pierce, 2004).
HCR Technology References
-
Choi, H.M.T., Chang, J.Y., Trinh, L.A., Padilla, J.E., Fraser, S.E., & Pierce, N.A. (2010). Programmable in situ amplification for multiplexed imaging of mRNA expression.
Nat Biotechnol, 28:1208–1212.
(pdf,
supp info,
supp movie 1,
supp movie 2)
-
Choi, H.M.T., Beck, V.A., & Pierce, N.A. (2014). Next-generation in situ hybridization chain reaction: higher gain, lower cost, greater durability.
ACS Nano, 8(5):4284-4294.
(pdf,
supp info,
movie)
-
Choi, H.M.T., Calvert, C.R., Husain, N., Huss, D., Barsi, J.C., Deverman, B.E., Hunter, R.C., Kato, M., Lee, S.M., Abelin, A.C.T., Rosenthal, A.Z., Akbari, O.S., Li, Y., Hay, B.A., Sternberg, P.W., Patterson, P.H., Davidson, E.H., Mazmanian, S.K., Prober, D.A., van de Rijn, M., Leadbetter, J.R., Newman, D.K., Readhead, C., Bronner, M.E., Wold, B., Lansford, R., Sauka-Spengler, T., Fraser, S.E., & Pierce, N.A. (2016). Mapping a multiplexed zoo of mRNA expression.
Development, 143:3632-3637.
(pdf, supp info,
fruit fly movie,
sea urchin movie,
zebrafish movie,
chicken movie,
mouse movie)
-
Choi, H.M.T., Schwarzkopf, M., Fornace, M.E., Acharya, A., Artavanis, G., Stegmaier, J., Cunha, A., & Pierce, N.A. (2018). Third-generation in situ hybridization chain reaction: multiplexed, quantitative, sensitive, versatile, robust. Development, 145, dev165753. (pdf, supp info, Dot Analysis 1.0 package)
-
Dirks, R.M., & Pierce, N.A. (2004). Triggered amplification by hybridization chain reaction.
Proc Natl Acad Sci USA, 101(43), 15275–15278. (pdf)
-
Schulte, S.J., Fornace, M.E., Hall, J.K., Shin, G.J., Pierce, N.A spectral imaging: 10-plex, quantitative high- resolution RNA, & protein imaging in highly autofluorescent samples. (2024a).
Development, 151(4), dev202307.
(pdf,
supp info,
HCR Imaging Python Module containing Dot Detection 2.0 and Unmix 1.0 packages)
-
Schulte, S.J., Shin, B., Rothenberg, E.V., & Pierce, N.A. (2024b). Multiplex, quantitative, high-resolution imaging of protein:protein complexes via hybridization chain reaction.
ACS Chem Biol, 19(2), 280–288.
(pdf,
supp info)
-
Schwarzkopf, M., Liu, M. C., Schulte, S. J., Ives, R., Husain, N., Choi, H. M. T., & Pierce, N. A. (2021). Hybridization chain reaction enables a unified approach to multiplexed, quantitative, high-resolution immunohistochemistry and in situ hybridization.
Development, 148(22), dev199847.
(pdf,
supp info)
-
Schwarzkopf, M., & Pierce, N.A. (2016). Multiplexed miRNA northern blots via hybridization chain reaction.
Nucleic Acids Res, 44(15), e129.
(pdf,
supp info)
-
Shah, S., Lubeck, E., Schwarzkopf, M., He, T.-F., Greenbaum, A., Sohn, C.H., Lignell, A., Choi, H.M.T., Gradinaru, V., Pierce, N.A., & Cai, L. (2016). Single-molecule RNA detection at depth via hybridization chain reaction and tissue hydrogel embedding and clearing.
Development, 143:2862-2867.
(pdf, supp info,
movie 1,
movie 2,
movie 3)
-
Trivedi, V., Choi, H.M.T., Fraser, S.E., & Pierce, N.A. (2018). Multidimensional quantitative
analysis of mRNA expression within intact vertebrate embryos. Development, 145, dev156869.
(pdf, supp info, Read-out/Read-in 1.0 package)
-
Vieregg, J.R., Nelson, H.M., Stoltz, B.M., & Pierce, N.A. (2013). Selective nucleic acid capture
with shielded covalent probes.
J Am Chem Soc, 135(26), 9691–9699.
(pdf, supp info)
|
|